Tetragonal CH3NH3PbI3 is ferroelectric.

نویسندگان

  • Yevgeny Rakita
  • Omri Bar-Elli
  • Elena Meirzadeh
  • Hadar Kaslasi
  • Yagel Peleg
  • Gary Hodes
  • Igor Lubomirsky
  • Dan Oron
  • David Ehre
  • David Cahen
چکیده

Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface band structure engineering by ferroelectric polarization in perovskite solar cells

0.1016/j.nanoen.2 lsevier Ltd. All rig thors. : [email protected] . Zhu), spriya@vt. ntributed equally Abstract We demonstrate the presence of ferroelectric domains in CH3NH3PbI3 by piezoresponse force microscopy and quantify the coercive field to the switching of the polarization of ferroelectric CH3NH3PbI3. For CH3NH3PbI3 perovskite solar cell, negative electric poling decreases the net built-in...

متن کامل

Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3

Organic-inorganic hybrid perovskites are exciting candidates for next-generation solar cells, with CH3NH3PbI3 being one of the most widely studied. While there have been intense efforts to fabricate and optimize photovoltaic devices using CH3NH3PbI3, critical questions remain regarding the crystal structure that governs its unique properties of the hybrid perovskite material. Here we report una...

متن کامل

Antiferroelectric Nature of CH3NH3PbI3−xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been ...

متن کامل

Exploring the orthorhombic-tetragonal phase transition in CH3NH3PbI3: the role of atom kinetics.

Methylammonium lead tri-iodide is a polymorphic material with two temperature-induced phase transitions at 165 K and 327 K, accompanied by an orthorhombic-to-tetragonal and a tetragonal-to-cubic lattice modification. Understanding the origins of these transitions as well as their implications on the crystal structure of the material is fundamental for its technological optimization. Here, we us...

متن کامل

Correction to "Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells".

Although there has been rapid progress in the efficiency of perovskite-based solar cells, hysteresis in the current-voltage performance is not yet completely understood. Owing to its complex structure, it is not easy to attribute the hysteretic behavior to any one of different components, such as the bulk of the perovskite or different heterojunction interfaces. Among organo-lead halide perovsk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 28  شماره 

صفحات  -

تاریخ انتشار 2017